Antimicrobial properties of pyridine-2,6-dithiocarboxylic acid, a metal chelator produced by Pseudomonas spp.
نویسندگان
چکیده
Pyridine-2,6-dithiocarboxylic acid (pdtc) is a metal chelator produced by Pseudomonas spp. It has been shown to be involved in the biodegradation of carbon tetrachloride; however, little is known about its biological function. In this study, we examined the antimicrobial properties of pdtc and the mechanism of its antibiotic activity. The growth of Pseudomonas stutzeri strain KC, a pdtc-producing strain, was significantly enhanced by 32 microM pdtc. All nonpseudomonads and two strains of P. stutzeri were sensitive to 16 to 32 microM pdtc. In general, fluorescent pseudomonads were resistant to all concentrations tested. In competition experiments, strain KC demonstrated antagonism toward Escherichia coli. This effect was partially alleviated by 100 microM FeCl3. Less antagonism was observed in mutant derivatives of strain KC (CTN1 and KC657) which lack the ability to produce pdtc. A competitive advantage was restored to strain CTN1 by cosmid pT31, which restores pdtc production. pT31 also enhanced the pdtc resistance of all pdtc-sensitive strains, indicating that this plasmid contains elements responsible for resistance to pdtc. The antimicrobial effect of pdtc was reduced by the addition of Fe(III), Co(III), and Cu(II) and enhanced by Zn(II). Analyses by mass spectrometry determined that Cu(I):pdtc and Co(III):pdtc2 form immediately under our experimental conditions. Our results suggest that pdtc is an antagonist and that metal sequestration is the primary mechanism of its antimicrobial activity. It is also possible that Zn(II), if present, may play a role in pdtc toxicity.
منابع مشابه
Synthesis and crystal structure compound Adeninium Bis(pyridine-2,6-dicarboxylate) Chromate(III) pyridine-2,6-dicarboxylic acid tetra hydrate
A new supramolecular compound of adeninium bis(pyridine-2,6-dicarboxylate) Chromate(III) pyridine-2,6-dicarboxylic acid tetrahydrate (AdH+)[Cr(pydc)2](H2pydc).4H2O (1) (where Ad and H2pydc are adenine and pyridine-2,6-dicarboxylic acid, respectively) was synthesized via proton transfer method and its structure was determined using single crystal X-ray diffraction technique. This compound crysta...
متن کاملCharacterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.)
Plant growth promoting rhizobacteria (PGPR) are known to influence plant growth by various direct or indirect mechanisms. In search of efficient PGPR strains with multiple activities, a total of 150 bacterial isolates belonging to Bacillus, Pseudomonas, Azotobacter and Rhizobium were isolated from different rhizospheric soil of chick pea in the vicinity of Allahabad. These test isolates were bi...
متن کاملبررسی اثر ضد میکروبی کفیر بر سودوموناس آئروژینوزا
Introduction : Kefir is a probiotic mixture of bacteria and yeast originating from Qafqaz region. The Kefir grain contain s both Lactic acid bacteria (Lactobacillus,Lactococcus,Leuconostoc,Acetobacte and Streptococcus spp.) and yeast (Kluyveromyces, Torula, Candida and Saccharomyces spp.). Kefir is claimed to have therapeutic effect. This study looked at the antimicrobial activity of Kefir on...
متن کاملSynthesis, Identification and Calculation of Complex Crystallographic Structure of Cobalt (II) with theLigand Heterocyclic Derived from Pyridine
A novel Pyridine-2,6-dicarboxylic acid mixed ligands complex of formula [Co(NO3)2].6H2O has been obtained by the reaction of Pyridine-2,6-dicarboxylic acid with cobalt nitrate and 1,10-phenanthroline on heating in water. The structures of [Co(pydc)(Phen)(H2O)](pydcH2).4H2O receptors, and their complexes were optimized using DFT method at the B3LYP/3-21G** level. The highest occupied molecular o...
متن کاملRemoval of Cd2+ and Zn2+ from industrial wastes using novel magnetic N2,N6-di(thiazol-2-yl)pyridine-2,6-dicarboxamide nanoadsorbent
In this workN2,N6-di(thiazol-2-yl)pyridine-2,6-dicarboxamide (DPD), was synthesized via reaction of 2-aminothiazole and 2,6- pyridinedicarboxylic acid in n-methylpyrrolidine. The obtained (DPD) was characterized with nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared (FT-IR) spectroscopy, and elemental analysis. Finally, a novel magnetic nanoadsorbent was synthesized by m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 67 9 شماره
صفحات -
تاریخ انتشار 2001